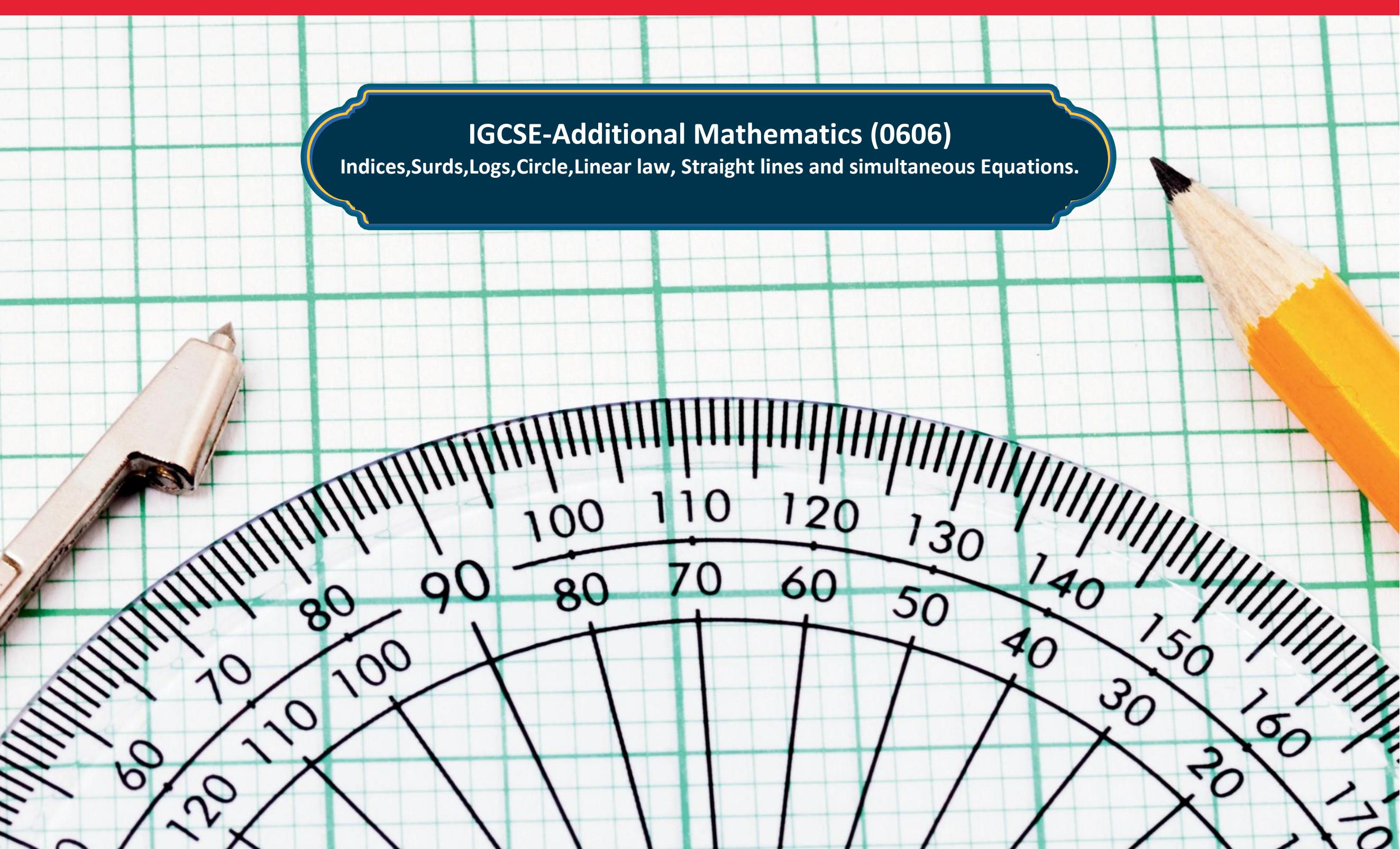


POINT⁷S

Your International Curriculum


Expert

ELEVATE

MATH TOPICAL WORKSHEETS

IGCSE-Additional Mathematics (0606)

Indices, Surds, Logs, Circle, Linear law, Straight lines and simultaneous Equations.

Topic:	Indices, Surds, Logs, Circle, Linear law, Straight lines and simultaneous Equations.
Board:	IGCSE
Subject:	Additional Mathematics (0606)

1

The coordinates of points A , B , C and D are as follows.

$$A(-4, 3) \quad B(6, -9) \quad C(15, 10) \quad D(14, -1)$$

The line L has equation $y = 11x - 75$.

The perpendicular bisector of the line AB meets L at the point E .

Find the area of triangle CDE .

[7]

2

The straight line $y = 3x - 11$ and the curve $xy = 4 - 3x - 2x^2$ intersect at the points A and B . The point C , with coordinates $(a, -8)$ where a is a constant, lies on the perpendicular bisector of the line AB . Find the value of a . [8]

3

When $\ln y$ is plotted against x^3 , a straight line passing through the points $(2, 5)$ and $(-8, 25)$ is obtained.

(a) Find y in terms of x . [4]

(b) Find the value of x when $y = e^{25}$. [2]

4

Variables x and y are such that when \sqrt{y} is plotted against $\log_2(x+1)$, where $x > -1$, a straight line is obtained which passes through $(2, 10.4)$ and $(4, 15.4)$.

(a) Find \sqrt{y} in terms of $\log_2(x+1)$. [4]

(b) Find the value of y when $x = 15$. [1]

5

(a) Given that $\frac{\sqrt[3]{xy}(zy)^2}{(xz)^{-3}\sqrt{z}} = x^a y^b z^c$, find the exact values of the constants a , b and c . [3]

(b) Solve the equation $5(2^{2p+1}) - 17(2^p) + 3 = 0$. [4]

6

Find the x -coordinates of the points of intersection of the curves $\frac{x^2}{4} + \frac{y^2}{9} = 1$ and $y = \frac{3}{2x}$.
Give your answers correct to 3 decimal places.

[5]

POINTS
Your International Curriculum
Expert

7

Solve the following simultaneous equations, giving your answers in the form $a + b\sqrt{7}$ where a and b are integers.

$$x + 3y = 11$$

$$x - \sqrt{7}y = 7$$

[5]

POINT'S
Your International Curriculum
Expert

8. Point A has coordinates $(3, -1)$.

A circle has equation $(x-4)^2 + (y+3)^2 = 5$.

(a) Show that A lies on the circumference of the circle. [1]

(b) Given that AB is a diameter of the circle, find the coordinates of B . [2]

(c) Find the equation of the tangent to the circle at A . [3]

9. Solutions by accurate drawing will not be accepted.

A circle, C , has equation $(x-5)^2 + (y-12)^2 = 100$.

(a) Find the equation of the tangent to C at the point $(11, 4)$.

Give your answer in the form $ax + by = c$, where a , b and c are integers.

[4]

(b) Show that C and the circle with equation $x^2 + y^2 = 4$ do not intersect.

[2]

10. DO NOT USE A CALCULATOR IN THIS QUESTION.

(a) Find the exact distance between the two points where the curve $9(x-1)^2 + 4(y-3)^2 = 36$ cuts the y -axis. [4]

(b) Find the coordinates of the points where the curve with equation $2x^2 + 83xy = x^3y - 20x$ intersects the curve with equation $y = \frac{1}{x}$. Give each of your answers in the form $a + b\sqrt{c}$, where a and b are rational and c is the smallest integer possible. [6]

11. The first three terms of an arithmetic progression can be written as

$$2 \ln(x^3), \quad 5 \ln(x^2), \quad 2 \ln(x^7).$$

(a) Given that $x > 1$, find the least number of terms for the sum of this progression to be greater than $43 \ln(x^{24})$. [6]

POINAS
Your International Curriculum
Expert

12. (a) Solve the equation $x^{\frac{1}{3}} - x^{\frac{1}{6}} = 2$. [4]

(b) Solve the simultaneous equations

$$\begin{aligned} \lg(x+2y) &= 0 \\ x^2 + 4xy + y &= 1. \end{aligned}$$

[5]

POINT'S
Your International Curriculum
Expert

13. Solve the equation $3(2^{2x+1}) - 11(2^x) + 3 = 0$, giving your answers correct to 2 decimal places. [4]

14. Solve the following equations, giving your answers to 3 significant figures.

(a) $2^{3x+1} = 5^{x-2}$ [3]

(b) $e^{2y+1} = 1 + \frac{6}{e^{2y+1}}$ [4]