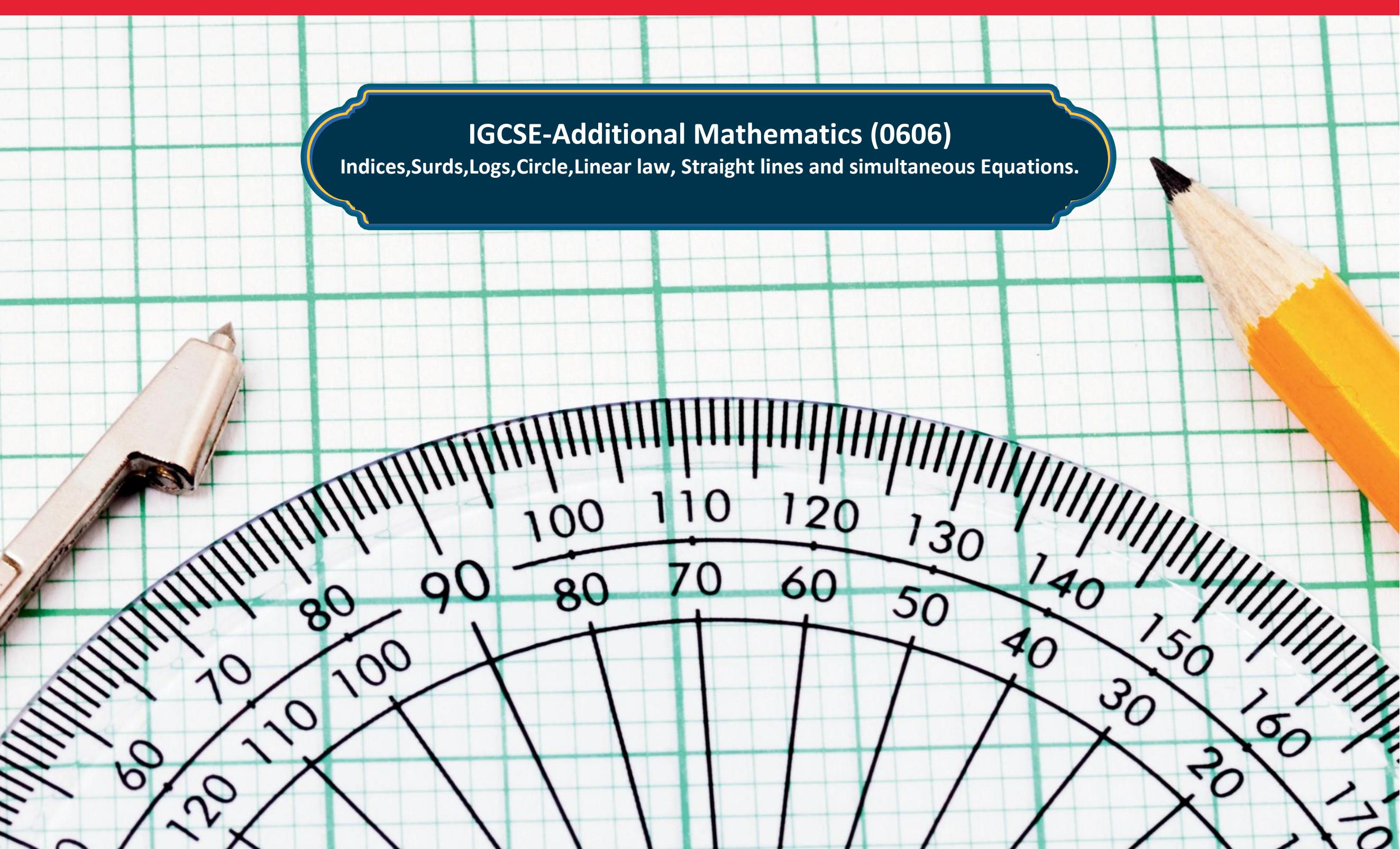


POINT⁷S

Your International Curriculum


Expert

ELEVATE

MATH TOPICAL WORKSHEETS

IGCSE-Additional Mathematics (0606)

Indices, Surds, Logs, Circle, Linear law, Straight lines and simultaneous Equations.

Topic:	Indices, Surds, Logs, Circle, Linear law, Straight lines and simultaneous Equations.
Board:	IGCSE
Subject:	Additional Mathematics (0606)

1

	$m_{AB} = \frac{-9-3}{6-4}$ oe isw or $-\frac{6}{5}$	M1	
	$[m_{\perp} =] \frac{5}{6}$ or $\frac{-1}{\text{their } m_{AB}}$	M1	FT <i>their</i> m_{AB} providing that difference in y attempted difference in x
	[Midpoint] $\left(\frac{-4+6}{2}, \frac{3-9}{2}\right)$ oe isw or $(1, -3)$	M1	
	Finds equation of perpendicular bisector: $y - \text{their } (-3) = -\frac{1}{\text{their } \left(-\frac{6}{5}\right)}(x - \text{their } 1)$ oe	M1	FT <i>their</i> perpendicular gradient providing gradient is $\frac{-1}{\text{their } m_{AB}}$ and using <i>their</i> midpoint <i>Their</i> midpoint must not be any of A, B, C or D
	$11x - 75 = \frac{5}{6}x - \frac{23}{6}$	M1	Eliminates one variable dep on previous M mark $11x - 75 = \text{their perp bisector equation}$
	$E(7, 2)$	A1	
	[Area $CDE =] 40$	A1	Dependent on all previous marks

2

	$5x^2 - 8x - 4 = 0$ or $5y^2 - 36y - 305 = 0$	M1	For attempt to eliminate one variable to obtain a 3 term quadratic equation ($= 0$). Allow one sign error.
	$x = -\frac{2}{5}, x = 2$ $y = -\frac{61}{5}, y = -5$	3	Dep M1 for attempt to solve <i>their</i> quadratic equation A1 for any correct pair A1 for a second correct pair.
	Mid-point $\left(\frac{4}{5}, -\frac{43}{5}\right)$	M1	For attempt to find mid-point using <i>their</i> coordinates
	Gradient of perpendicular = $-\frac{1}{3}$	B1	
	$y + \frac{43}{5} = -\frac{1}{3}\left(x - \frac{4}{5}\right)$	M1	For attempt to find the equation of the perpendicular bisector using <i>their</i> perpendicular gradient and <i>their</i> midpoint. Allow alternative methods
	$a = -1$	A1	

3

(a)	$\ln y = mx^3 + c$ soi	B1	c may be shown as a log term
	$25 = -8m + c$ $5 = 2m + c$	M1	For at least one correct equation, may be used with gradient of -2
	$m = -2, c = 9$	A1	$y = -2x + 9$ seen implies M1A1
	$y = e^{9-2x^3}$ oe	A1	
(b)	$25 = 9 - 2x^3$	M1	For equating exponential indices and obtaining $x = \dots$ or use of $x = \sqrt[3]{\frac{25 - \text{their } 9}{\text{their } - 2}}$
	$x = -2$ only	A1	

(a)	[Gradient =] $\frac{15.4 - 10.4}{4 - 2}$ oe soi	M1	
	10.4 = <i>their</i> $2.5 \times 2 + c$ or $15.4 = \text{their} 2.5 \times 4 + c$ or $\frac{y - 10.4}{x - 2} = \text{their} 2.5$ or $\frac{y - 15.4}{x - 4} = \text{their} 2.5$	M1	FT <i>their</i> gradient
	[Gradient =] 2.5 soi and [intercept =] 5.4 soi	A1	
	$\sqrt{y} = 2.5 \log_2(x + 1) + 5.4$ oe isw	A1	
	Alternative method		
	10.4 = $2m + c$ and $15.4 = 4m + c$ and solving to find m or c	(M1)	
	Use <i>their</i> m or c to find <i>their</i> c or m	(M1)	
(b)	$\frac{5929}{25}$ or 237.16	B1	
(c)	$5 = \text{their} 2.5 \log_2(x + 1) + \text{their} 5.4$ and rearrange to make $\log_2(x + 1)$ the subject	M1	FT <i>their</i> equation from (a) of correct form with $m \neq 1$ or 0, and $c \neq 0$ Condone any base
	$-\frac{4}{25} = \log_2(x + 1)$ oe	A1	Condone any base
	$x = -0.105$ or $-0.1049[74\dots]$ rot to 4 or more sf	A1	

5

(a)	$a = \frac{10}{3}$ or $3\frac{1}{3}$	B1	
	$b = \frac{7}{3}$ or $2\frac{1}{3}$	B1	
	$c = \frac{9}{2}$ or $4\frac{1}{2}$ or 4.5	B1	
(b)	$10(2^p)^2 - 17(2^p) + 3 = 0$ $(5(2^p) - 1)(2(2^p) - 3) = 0$ $2^p = \frac{1}{5}, 2^p = \frac{3}{2}$	M1	For recognition of a quadratic in 2^p , attempt to factorise and solve for 2^p
	$p = \frac{\ln \frac{1}{5}}{\ln 2}$ or $p = \frac{\ln 1.5}{\ln 2}$ oe	M1	For correct attempt to deal with $2^p = k$
	-2.32	A1	
	0.585	A1	

6

	Eliminates one unknown e.g. $\frac{x^2}{4} + \frac{1}{9} \left(\frac{3}{2x}\right)^2 = 1$	M1	
	Rearranges to solvable form e.g. $x^4 - 4x^2 + 1 = 0$	A1	
	Solves : $\frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2}$	M1	dep on attempt to eliminate one unknown and having a 3-term quadratic in x^2
	$x^2 = 2 \pm \sqrt{3}$ oe isw or 3.7320[5...] and 0.2679[4...]	A1	
	$x = \pm 1.932$ or $x = \pm 0.518$	A1	

7

	<p>Finds by elimination $3y + \sqrt{7}y = 4$ oe or substitutes $x = 11 - 3y$ into $x - \sqrt{7}y = 7$ oe OR Finds by elimination $3y + \sqrt{7}y = 21 + 11\sqrt{7}$ oe or substitutes $y = \frac{11-x}{3}$ into $x - \sqrt{7}y = 7$ oe</p>	M1	
	$y = \frac{4}{3 + \sqrt{7}}$ or $x = \frac{21 + 11\sqrt{7}}{3 + \sqrt{7}}$	A1	
	$y = \frac{4}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}}$ oe or $x = \frac{21 + 11\sqrt{7}}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}}$ oe	M1	FT their value of x or y providing of equivalent difficulty
	$y = 6 - 2\sqrt{7}$ and $x = 6\sqrt{7} - 7$	A2	A1 for either and no extra values

8.

(a)	$(3 - 4)^2 + (-1 + 3)^2 = 5$ or showing that distance between point A and centre of circle = radius e.g. $\sqrt{(3 - 4)^2 + (-1 + 3)^2} = \sqrt{5}$	B1	Accept if x -coordinate substituted to find y - coordinate
(b)	$\begin{pmatrix} 4 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ oe, soi or using centre and point A e.g. $\frac{3+x}{2} = 4$ and $\frac{-1+y}{2} = -3$ or solve simultaneously the line $y = -2x + 5$ with the circle leading to 3 term quadratic $x^2 - 8x + 15 = 0$ with an attempt to solve	M1	Award M1 for the 2 equations Award the M1 for the quadratic
	(5, -5)	A1	

(c)	gradient of radius = $\frac{-3+1}{4-3} = -2$ soi by gradient of tangent	M1	
	gradient of tangent = $\frac{-1}{\text{their}(-2)}$	M1	FT <i>their</i> -2 Allow if differentiation is used e.g.:
	$y + 1 = \frac{1}{2}(x - 3)$ oe	A1	FT $\frac{-1}{\text{their} - 2}$ ISW from a correct unsimplified answer
	Alternative		
	use of differentiation e.g.: $(y+3)^2 = 5 - (x-4)^2$ $y = \sqrt{-x^2 + 8x - 11} - 3$ $\frac{dy}{dx} = \frac{-2x+8}{2\sqrt{-x^2 + 8x - 11}}$	(M1)	allow one error or use of implicit differentiation (not on syllabus) e.g.: $2x + 2y \frac{dy}{dx} - 8 + 6 \frac{dy}{dx} = 0$ leading to $\frac{dy}{dx} = \frac{8-2x}{2y+6}$
	Substitute (3, -1) in <i>their</i> $\frac{dy}{dx}$ to get gradient = $\frac{1}{2}$	(M1)	Dep on first M1
	$y + 1 = \frac{1}{2}(x - 3)$ oe	(A1)	ISW from a correct unsimplified answer

9.

(a)	Centre (5, 12) soi	B1	
	Gradient of radius = $\frac{12-4}{5-11} \left(= -\frac{4}{3} \right)$	M1	
	Equation of normal: $y - 4 = \frac{3}{4}(x - 11)$	M1	Must be using <i>their</i> perpendicular gradient and the correct point
	$3x - 4y = 17$	A1	
(b)	Distance between centres = 13 Sum of radii = 12	M1	For both
	13 > 12 so no intersection	A1	

10. (a)	$4(y-3)^2 = 36 - 9$ or $4y^2 - 24y + 9 [= 0]$	M1	
	$y = 3 \pm \sqrt{\frac{27}{4}}$ or exact equivalent, soi	A1	
	$3 + \sqrt{\frac{27}{4}} - \left(3 - \sqrt{\frac{27}{4}}\right)$ oe	M1	FT their $a \pm \sqrt{b}$ providing b is not a square number
	$\sqrt{27}$ or $3\sqrt{3}$ or exact equivalent, nfww	A1	
(b)	Eliminates one unknown and simplifies terms: $2x^2 + 83 = x^2 - 20x$ oe, soi	M1	
	$x^2 + 20x + 83 = 0$	A1	
	Applies quadratic formula or completes the square: $x = \frac{-20 \pm \sqrt{20^2 - 4[1](83)}}{2}$	M1	FT their 3-term quadratic
	$x = -10 \pm \sqrt{17}$	A1	
	$y = \frac{1}{-10 \pm \sqrt{17}} \times \frac{-10 \mp \sqrt{17}}{-10 \mp \sqrt{17}}$	M1	FT their $x = a \pm \sqrt{b}$ providing previous M1 awarded
	$x = -10 \pm \sqrt{17}$, $y = -\frac{10}{83} \mp \frac{\sqrt{17}}{83}$	A1	dep on all marks previously awarded

<p>11. (a)</p> <p>Forms a correct equation from which the logarithms can be eliminated :</p> <p>has consistent powers of $\ln x$ in all terms</p> $\frac{n}{2}(12 \ln x + (n-1) \times 4 \ln x) * 43 \times 24 \ln x$ <p>oe, soi</p> <p>OR</p> <p>uses log laws to combine terms</p> $\ln(x^{6n} \times x^{2n(n-1)}) * \ln x^{24 \times 43} \text{ or better}$	<p>3</p>	<p>where * is = or any inequality sign</p> <p>M2 for $a = 6$ and $d = 4$ or $a = 6 \ln x$ soi and $d = 4 \ln x$ soi or $a = \ln x^6$ soi and $d = \frac{2}{3} \ln x^6$ soi or $a = \frac{3}{2} \ln x^4$ soi and $d = \ln x^4$ soi or for $\ln x^{\frac{12 \times n}{2}} + \ln x^{\frac{4(n-1) \times n}{2}} * \ln x^{24 \times 43}$ oe or M1 for any correct expression for d or for a correct expression for the sum to n terms using <i>their a</i> and <i>their d</i> providing <i>their d</i> is not one of the given terms</p>
$2n^2 + 4n - 1032[*0]$ oe	<p>A1</p>	
Solves <i>their</i> 3-term quadratic in n	<p>M1</p>	dep on attempt at the sum of an AP
$n = 22$ cao, nfww	<p>A1</p>	dep on all previous marks awarded

12. (a)	Solves or factorises $x^{\frac{1}{3}} - x^{\frac{1}{6}} - 2 = 0$ oe: $(x^{\frac{1}{6}} + 1)(x^{\frac{1}{6}} - 2)$ or when substituting $y = x^{\frac{1}{3}}$ factorises to $(y^2 + 1)(y^2 - 2)$	M1	A substitution may be used $(x^{\frac{1}{3}})^6 - (x^{\frac{1}{6}})^6 = 2^6$ scores 0 marks $(x^{\frac{1}{3}})^6 - (x^{\frac{1}{6}})^6 = x^{\log_x 2}$ then $\frac{1}{3} - \frac{1}{6} = \log_x 2$ scores 0 marks
	$\left[x^{\frac{1}{6}} = -1\right], x^{\frac{1}{6}} = 2$	A1	
	$x = 64$ [x = 1]	A1	
	Rejects $x^{\frac{1}{6}} = -1$ or $x = 1$ ignored at some stage, soi	B1	
	$x + 2y = 1$	B1	
(b)	Correctly eliminates one unknown	M1	Dep on B1 allow unsimplified e.g. $x = 1 - 2y$ or $y = \frac{1-x^2}{4x+1}$
	Correct quadratic in solvable form: $y - 4y^2 [= 0]$ oe or $2x^2 - 3x + 1 [= 0]$ oe	A1	
	Factorises or solves <i>their</i> quadratic to get two solutions	M1	Dep on previous M1
	$y = 0, x = 1$ and $y = \frac{1}{4}, x = \frac{1}{2}$	A1	

13.

	$6(2^{2x}) - 11(2^x) + 3 = 0$ soi	B1	
	$2^x = \frac{1}{3}, 2^x = \frac{3}{2}$	2	M1 for solution of <i>their</i> quadratic equation in 2^x or appropriate substitution to obtain $2^x = \dots$
	-1.58, 0.58	A1	For both

14. (a)	$(3x + 1)\log 2 = (x - 2)\log 5$ oe	B1	
	$(3\log 2 - \log 5)x = -\log 2 - 2\log 5$	M1	FT if of equivalent difficulty
	$x = -8.32$	A1	
(b)	Writes as a quadratic in e^{2y+1} or states $u = e^{2y+1}$ and writes as a quadratic in u oe, soi	M1	condone one error
	$(e^{2y+1})^2 - e^{2y+1} - 6 = 0$ oe or $u^2 - u - 6 = 0$ oe	A1	
	$(e^{2y+1} + 2)(e^{2y+1} - 3) = 0$ leading to $e^{2y+1} = 3$ or $(u + 2)(u - 3) = 0$ leading to $e^{2y+1} = 3$	A1	
	$y = 0.0493$ and no other solutions	A1	