

POINT⁷S

Your International Curriculum

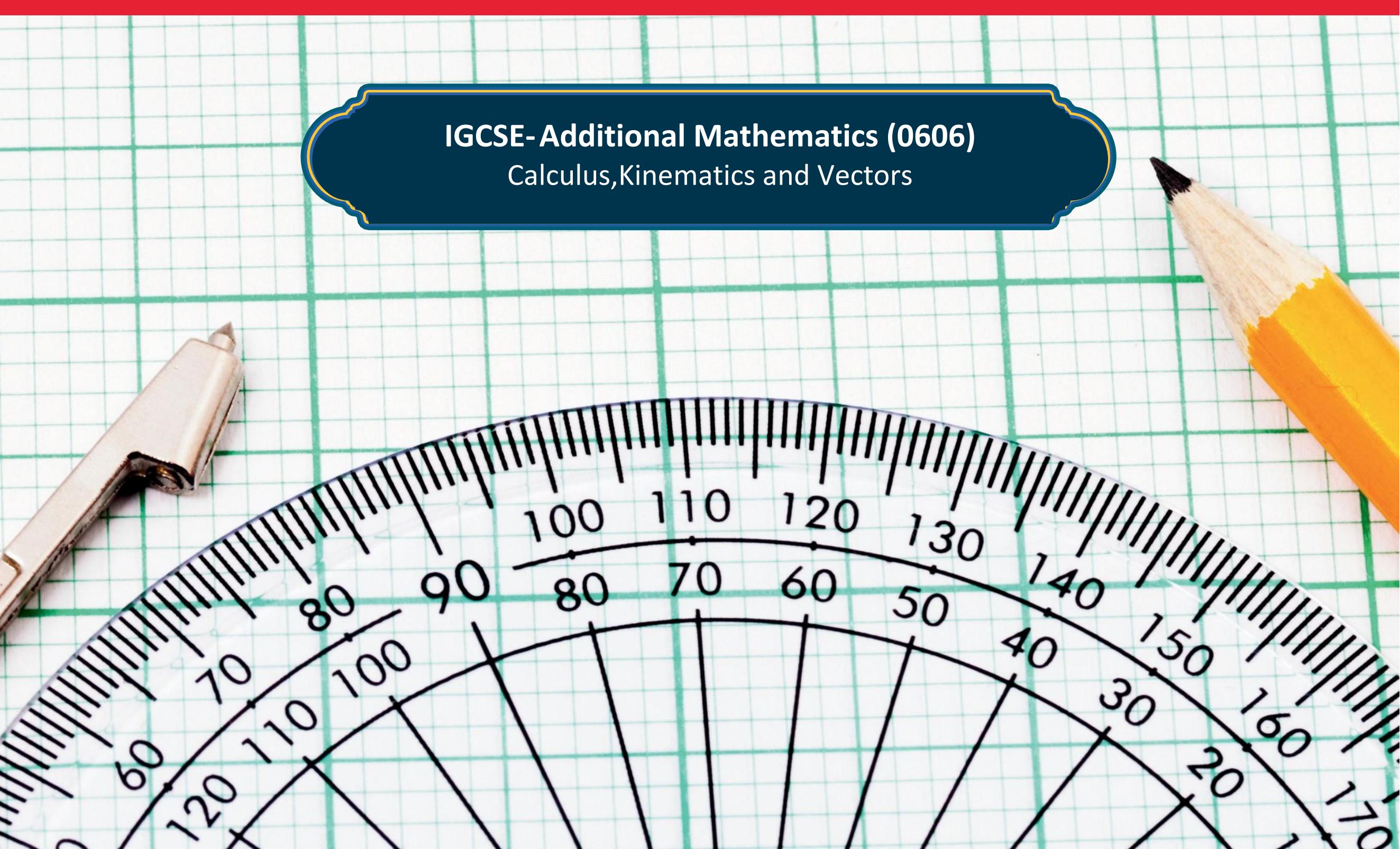
Expert

ELEVATE

MATH TOPICAL WORKSHEETS

IGCSE-Additional Mathematics (0606)

Calculus, Kinematics and Vectors



1 (a) Show that $\frac{3}{2x-3} + \frac{3}{2x+3}$ can be written as $\frac{12x}{4x^2-9}$.

(2 marks)

(b) Hence find $\int \frac{12x}{4x^2-9} dx$, giving your answer as a single logarithm and an arbitrary constant.

(3 marks)

(c) Given that $\int_2^a \frac{12x}{4x^2 - 9} dx = \ln 5\sqrt{5}$, where $a > 2$, find the exact value of a .

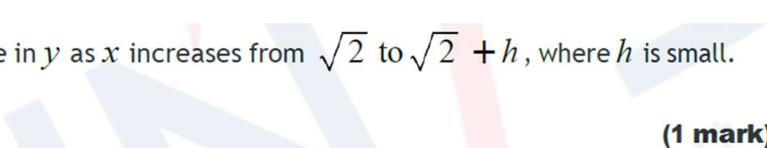
(4 marks)

2 (a) A curve has equation $y = \frac{\ln(3x^2 - 5)}{2x + 1}$ for $3x^2 > 5$

Find the equation of the normal to the curve at the point where $x = \sqrt{2}$.

(6 marks)

(b) Find the approximate change in y as x increases from $\sqrt{2}$ to $\sqrt{2} + h$, where h is small.



(1 mark)

3 (a) Find the equation of the tangent to the curve $y = x^3 - 6x^2 + 3x + 10$ at the point where $x = 1$.

 (4 marks)

(b) Find the coordinates of the point where this tangent meets the curve again.

(5 marks)

4 (a) It is given that $y = \frac{\tan 3x}{\sin x}$.

Find the exact value of $\frac{dy}{dx}$ when $x = \frac{\pi}{3}$.

(4 marks)

POINTS EDULAB

(b) Hence find the approximate change in y as x increases from $\frac{11}{3}$ to $\frac{\pi}{3} + h$, where h is small.

(1 mark)

(c) Given that x is increasing at the rate of 3 units per second, find the corresponding rate of change in y when $x = \frac{\pi}{3}$, giving your answer in its simplest surd form.

(2 marks)

5 (a) A particle moves in a straight line such that, t seconds after passing a fixed point O , its displacement from O is s m, where $s = e^{2t} - 10 e^t - 12t + 9$.

Find expressions for the velocity and acceleration at time t .

(3 marks)

(b) Find the time when the particle is instantaneously at rest.

(3 marks)

(c) Find the acceleration at this time.

(2 marks)

6 (a) A particle travels in a straight line. As it passes through a fixed point O , the particle is travelling at a velocity of 3 ms^{-1} . The particle continues at this velocity for 60 seconds then decelerates at a constant rate for 15 seconds to a velocity of 1.6 ms^{-1} . The particle then decelerates again at a constant rate for 5 seconds to reach point A , where it stops.

Sketch the velocity-time graph for this journey on the axes below.

(3 marks)

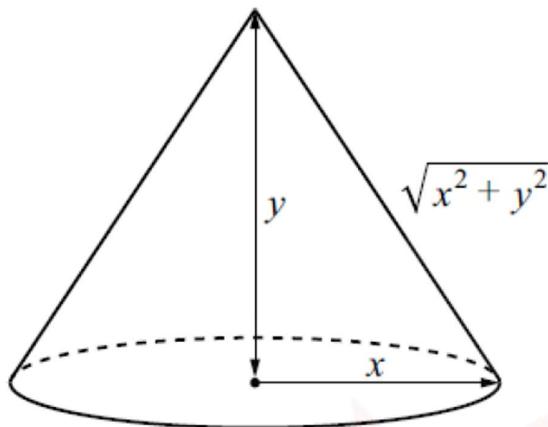
(b) Find the distance between O and A .

(3 marks)

(c) Find the deceleration in the last 5 seconds.

(1 mark)

7 (a) In this question, all lengths are in centimetres.



NOT TO
SCALE

The diagram shows a cone of base radius x , height y and sloping edge $\sqrt{x^2 + y^2}$. The volume of the cone is $10\pi \text{ cm}^3$.

Show that the curved surface area, S , of the cone is given by $S = \frac{\pi\sqrt{x^2 + 900}}{x}$.

(3 marks)

(b) Given that x can vary and that S has a minimum value, find the value of x for which S is a minimum.

(5 marks)

8 (a) A curve has equation $y = x \cos x$.

Find $\frac{dy}{dx}$.

(2 marks)

(b) Find the equation of the normal to the curve at the point where $x = \pi$, giving your answer in the form $y = mx + c$.

(4 marks)

POINTS EDULAB

9 (a) Given that $y = (x^2 - 1)\sqrt{5x + 2}$, show that $\frac{dy}{dx} = \frac{Ax^2 + Bx + C}{2\sqrt{5x + 2}}$, where A , B and C are integers.

(5 marks)

(b) Find the coordinates of the stationary point of the curve $y = (x^2 - 1)\sqrt{5x + 2}$ for $x > 0$. Give each coordinate correct to 2 significant figures.

(3 marks)

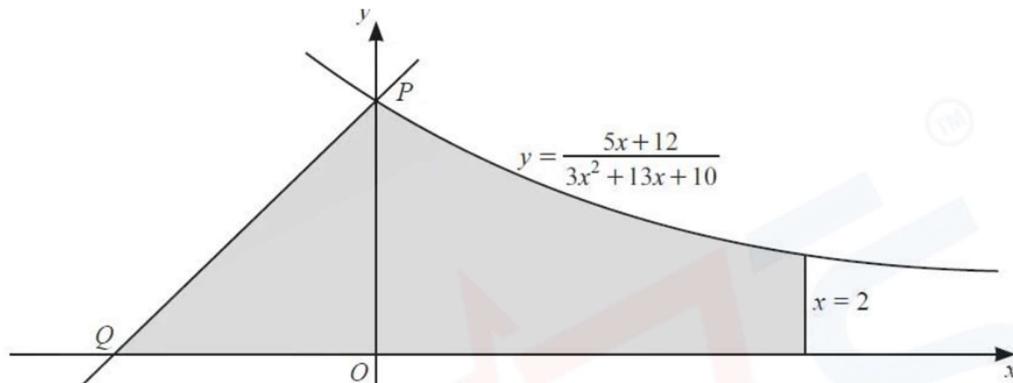
(c) Determine the nature of this stationary point.

(2 marks)

10 (a) Show that $\frac{1}{x+1} + \frac{2}{3x+10}$ can be written as $\frac{5x+12}{3x^2+13x+10}$

(1 mark)

(b)



q10b-0606-w20-qp-13-additional-maths

$$5x + 12$$

The diagram shows part of the curve $y = \frac{5x + 12}{3x^2 + 13x + 10}$, the line $x = 2$ and a straight line of gradient 1. The curve intersects the y -axis at the point P . The line of gradient 1 passes through P and intersects the x -axis at the point Q . Find the area of the shaded region, giving your answer in the form $a + \frac{2}{3} \ln(b\sqrt{3})$, where a and b are constants.

(9 marks)

11 (a) Giving your answer in its simplest form, find the exact value of

$$\int_0^4 \frac{10}{5x+2} dx$$

(4 marks)

(b) $\int_0^{\ln 2} (e^{4x} + 2)^2 dx$

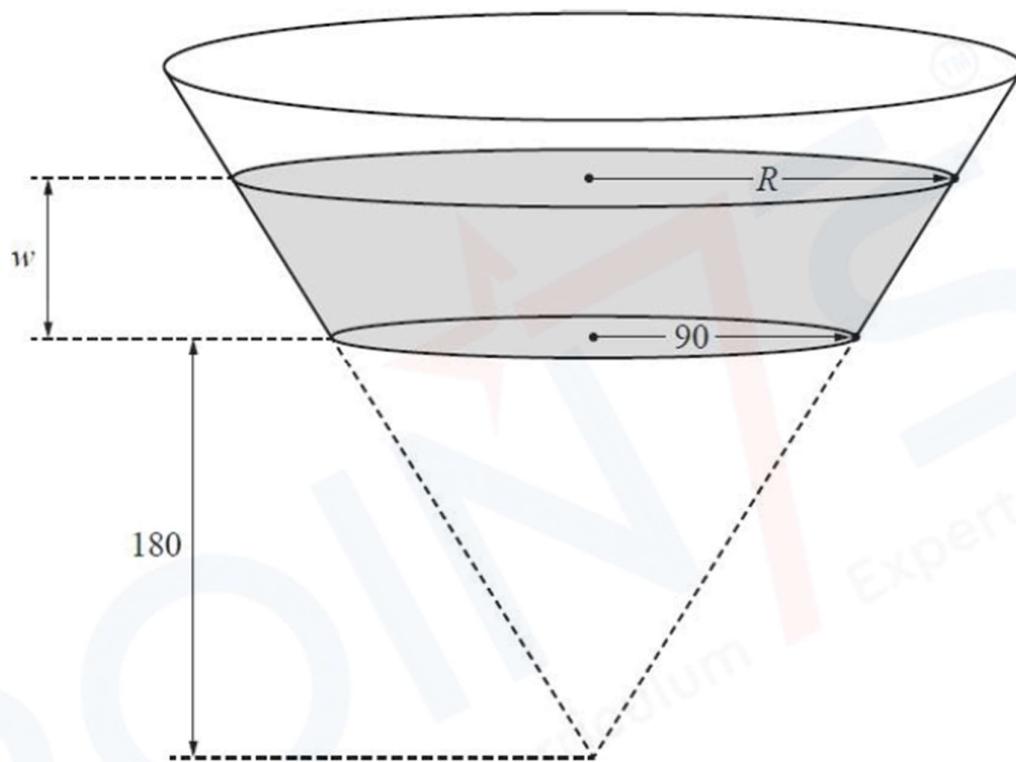
(5 marks)

12 Find the equation of the tangent to the curve $y = \frac{\ln(3x^2 - 1)}{x + 2}$ at the point where $x = 1$.

Give your answer in the form $y = mx + c$, where m and c are constants correct to 3 decimal places.

(6 marks)

13 (a) In this question all lengths are in centimetres. The volume, V , of a cone of height h and base radius r is given by $V = \frac{1}{3}\pi r^2 h$



The diagram shows a large hollow cone from which a smaller cone of height 180 and base radius 90 has been removed. The remainder has been fitted with a circular base of radius 90 to form a container for water. The depth of water in the container is w and the surface of the water is a circle of radius R .

Find an expression for R in terms of w and show that the volume V of the water in the container is given by $V = \frac{\pi}{12}(w + 180)^3 - 486000\pi$.

(3 marks)

POINTS EDULAB

(b) Water is poured into the container at a rate of $10\ 000\ \text{cm}^3\text{s}^{-1}$. Find the rate at which the depth of the water is increasing when $W = 10$.

(4 marks)

14 (a) A curve has the equation $y = e^{(4x - x^2)}$.

Find and factorise an expression for $\frac{dy}{dx}$.

(2 marks)

(b) Hence find $\int \frac{(2-x)e^{4x}}{e^{x^2}} dx$.

(2 marks)

(c) Show that the second derivative of the curve $y = e^{(4x - x^2)}$ satisfies the relationship

$$\frac{d^2y}{dx^2} = (p + qx + rx^2)y$$

where p , q and r are constants to be found.

(4 marks)

15 A curve is such that $\frac{d^2y}{dx^2} = \sin\left(6x - \frac{\pi}{2}\right)$ Given that $\frac{dy}{dx} = \frac{1}{2}$ at the point $\left(\frac{\pi}{4}, \frac{13\pi}{12}\right)$ on the curve, find the equation of the curve.

(7 marks)

16 (a) Differentiate $y = \tan(x + 4) - 3 \sin x$ with respect to x .

(2 marks)

(b) Variables x and y are such that $y = \frac{\ln(2x + 5)}{2e^{3x}}$. Use differentiation to find the approximate change in y as x increases from 1 to $1 + h$, where h is small.

(6 marks)

POINTS EDULAB

17

(a) The vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} = \alpha\mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 12\mathbf{i} + \beta\mathbf{j}$.

Find the value of each of the constants α and β such that $4\mathbf{a} - \mathbf{b} = (\alpha + 3)\mathbf{i} - 2\mathbf{j}$.

(3 marks)

(b) Hence find the unit vector in the direction of $\mathbf{b} - 4\mathbf{a}$.

(2 marks)

18

(a) The unit vectors \mathbf{i} and \mathbf{j} represent due east and due north respectively.

Person A starts at a position of $(-4\mathbf{i} + \mathbf{j})$ metres and walks with a constant velocity of $(3\mathbf{i} - \mathbf{j})$ metres per second.

Find the position vector of person A after 5 seconds.

(1 mark)

(b) Person B walks with a constant velocity of $(2\mathbf{i} + 2\sqrt{3}\mathbf{j})$ metres per second.

Find

- (i) the speed of person B,
- (ii) the bearing of the direction in which person B is walking.

(5 marks)

19

The position vectors of three points, A , B and C , relative to an origin O , are

$\begin{pmatrix} -5 \\ -7 \end{pmatrix}$, $\begin{pmatrix} 10 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} x \\ y \end{pmatrix}$ respectively. Given that $\overrightarrow{AC} = 4\overrightarrow{BC}$, find the unit vector in the direction of \overrightarrow{OC} .

(5 marks)

20

(a) Find the unit vector in the direction of $\begin{pmatrix} 5 \\ -12 \end{pmatrix}$.

(1 mark)

(b) Given that $\begin{pmatrix} 4 \\ 1 \end{pmatrix} + k \begin{pmatrix} -2 \\ 3 \end{pmatrix} = r \begin{pmatrix} -10 \\ 5 \end{pmatrix}$, find the value of each of the constants k and r .

(3 marks)

(c) Relative to an origin O , the points A , B and C have position vectors \mathbf{p} , $3\mathbf{q} - \mathbf{p}$ and $9\mathbf{q} - 5\mathbf{p}$ respectively.

(i) Find \overrightarrow{AB} in terms of \mathbf{p} and \mathbf{q} .

[1]

(ii) Find \overrightarrow{AC} in terms of \mathbf{p} and \mathbf{q} .

[1]

(iii) Explain why A , B and C all lie in a straight line.

[1]

(iv) Find the ratio $AB : BC$.

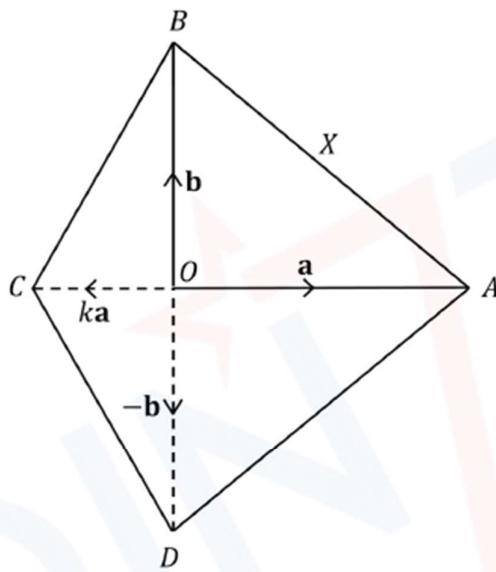
[1]

(4 marks)

21

i (a) The kite $ABCD$ has diagonals CA and BD which intersect at O , where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = k\mathbf{a}$ and $\overrightarrow{OD} = -\mathbf{b}$.

The point X is the midpoint of AB , as shown.



Find

- \overrightarrow{AB} in terms of \mathbf{a} and \mathbf{b}
- \overrightarrow{OX} in terms of \mathbf{a} and \mathbf{b}
- \overrightarrow{CD} in terms of k , \mathbf{a} and \mathbf{b}

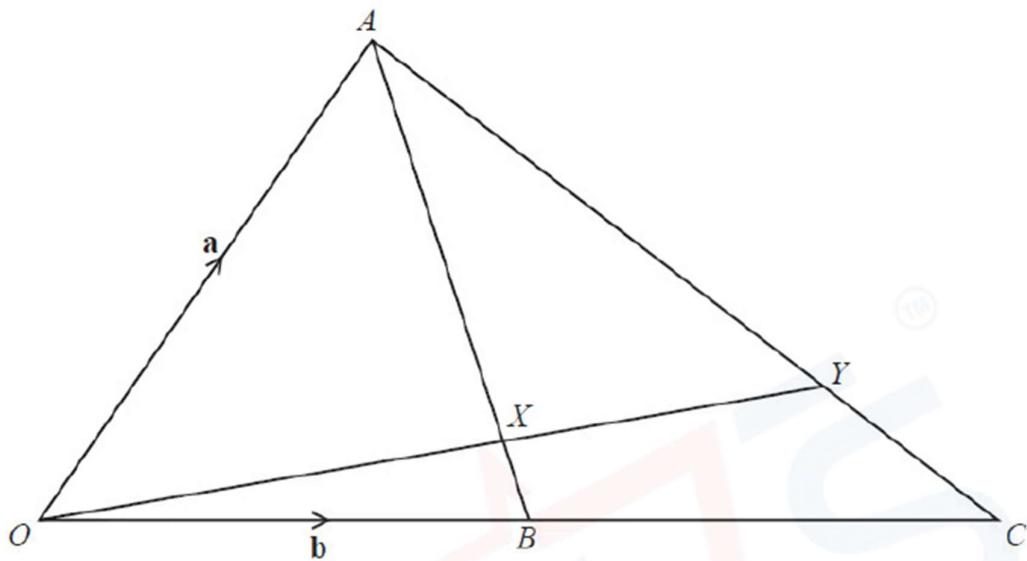
(b) The point Y lies on CD such that $CY: YD = 1:2$.

If \vec{YX} is parallel to $\mathbf{a} + \mathbf{b}$, find k .

(4 marks)

22

(a)



The diagram shows the triangle OAC . The point B is the midpoint of OC . The point Y lies on AC such that OY intersects AB at the point X where $AX:XB = 3:1$. It is given that $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

Find \overrightarrow{OX} in terms of a and b , giving your answer in its simplest form.

(3 marks)

(b) Find AC in terms of \mathbf{a} and \mathbf{b} .

(1 mark)

(c) Given that $\vec{OY} = h\vec{OX}$, find \vec{AY} in terms of \mathbf{a} , \mathbf{b} and h .

(1 mark)

(d) Given that $\vec{AY} = m\vec{AC}$, find the value of h and of m .

(4 marks)

22

(a) In this question all distances are in km.

A ship P sails from a point A , which has position vector $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, with a speed of 52 kmh^{-1} in the direction of $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$

Find the velocity vector of the ship.

 (1 mark)

POINTS EDULAB

(b) Write down the position vector of P at a time t hours after leaving A .

(1 mark)

(c) At the same time that ship P sails from A , a ship Q sails from a point B , which has position vector $\begin{pmatrix} 12 \\ 8 \end{pmatrix}$, with velocity vector $\begin{pmatrix} -25 \\ 45 \end{pmatrix} \text{ kmh}^{-1}$.

Write down the position vector of Q at a time t hours after leaving B .

(1 mark)

(d) Using your answers to parts (b) and (c), find the displacement vector \vec{PQ} at time t hours.

(1 mark)

POINTS EDULAB

(e) Hence show that $PQ = \sqrt{34t^2 - 168t + 208}$.

(2 marks)

(f) Find the value of t when P and Q are first 2 km apart.

(2 marks)

23

The parallelogram $OABC$ is such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$. The point D lies on OC such that $OD : DC = 1 : 2$. The point E lies on AC such that $AE : EC = 2 : 1$.

Show that $\overrightarrow{OB} = k\overrightarrow{DE}$, where k is an integer to be found.

(5 marks)

24

(a) A particle P is initially at the point with position vector $\begin{pmatrix} 30 \\ 10 \end{pmatrix}$ and moves with a constant speed of 10 ms^{-1} in the same direction as $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

Find the position vector of P after t s.

(3 marks)

(b) As P starts moving, a particle Q starts to move such that its position vector after t s is given by $\begin{pmatrix} -80 \\ 90 \end{pmatrix} + t \begin{pmatrix} 5 \\ 12 \end{pmatrix}$.

Write down the speed of Q .

(1 mark)

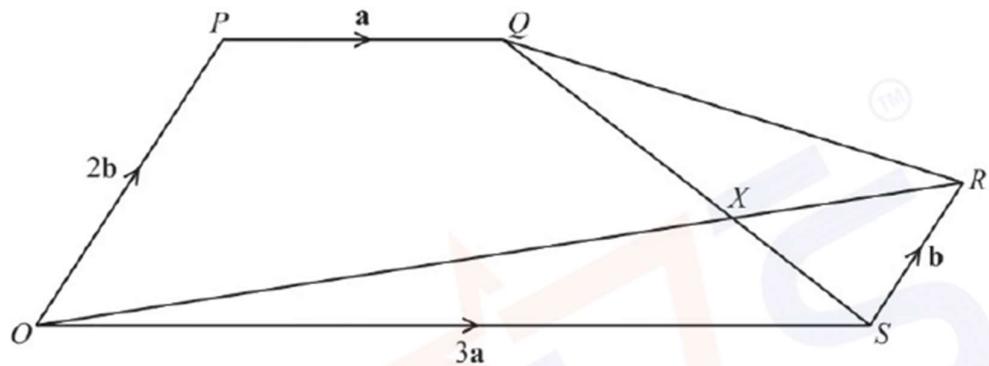
(c) Find the exact distance between P and Q when $t = 10$, giving your answer in its simplest surd form.

(3 marks)

25

(a) In the diagram $\vec{OP} = 2\mathbf{b}$, $\vec{OS} = 3\mathbf{a}$, $\vec{SR} = \mathbf{b}$ and $\vec{PQ} = \mathbf{a}$. The lines OR and QS intersect at X .

Find \vec{OQ} in terms of \mathbf{a} and \mathbf{b} .



(1 mark)

(b) Find \vec{QS} in terms of \mathbf{a} and \mathbf{b} .

(1 mark)

(c) Given that $\vec{QX} = \mu \vec{QS}$, find \vec{OX} in terms of \mathbf{a} , \mathbf{b} and μ .

(1 mark)

(d) Given that $\vec{OX} = \lambda \vec{OR}$, find \vec{OX} in terms of \mathbf{a} , \mathbf{b} and λ .

(1 mark)

(e) Find the value of λ and of μ .

(3 marks)

(f) Find the value of $\frac{QX}{XS}$.

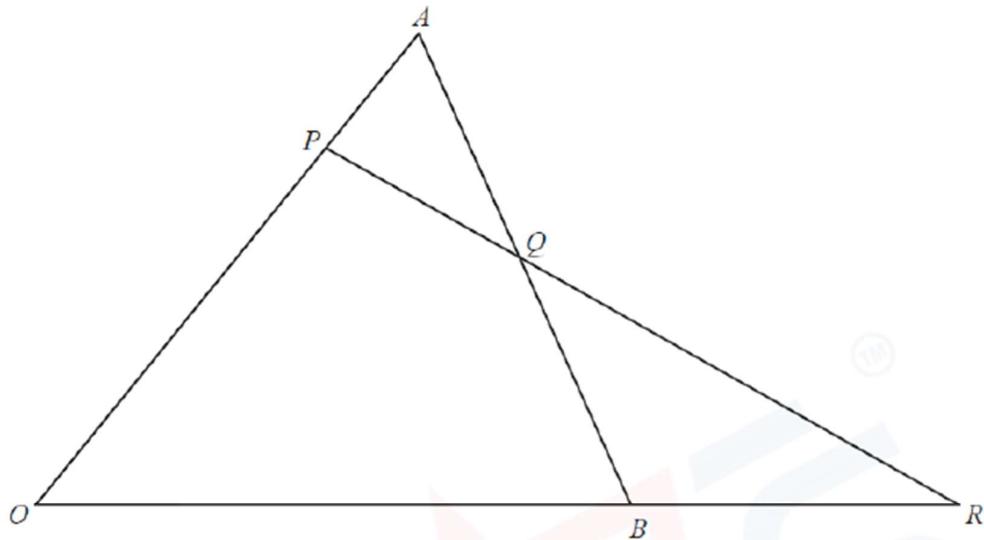
(1 mark)

(g) Find the value of $\frac{OR}{OX}$.

(1 mark)

26

(a)



The diagram shows a triangle OAB such that $\vec{OA} = \mathbf{a}$ and $\vec{OB} = \mathbf{b}$. The point P lies on OA such that $OP = \frac{3}{4}OA$. The point Q is the mid-point of AB . The lines OB and PQ are extended to meet at the point R . Find, in terms of \mathbf{a} and \mathbf{b} ,

Find \vec{AB}

(1 mark)

(b) Find \vec{PQ} . Give your answer in its simplest form.

(3 marks)

(c) It is given that $n\vec{PQ} = \vec{QR}$ and $\vec{BR} = k\mathbf{b}$, where n and k are positive constants.

Find \vec{QR} in terms of n , \mathbf{a} and \mathbf{b} .

(1 mark)

(d) Find \vec{QR} in terms of k , \mathbf{a} and \mathbf{b} .

(2 marks)

(e) Hence find the value of n and of k .

(3 marks)

27

(a) Relative to an origin O , the position vectors of the points A , B , C and D are

$$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 10 \\ 3 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } \overrightarrow{OD} = \begin{pmatrix} 12 \\ 7 \end{pmatrix}$$

Find the unit vector in the direction of \overrightarrow{AB} .

(3 marks)

(b) The point A is the mid-point of BC . Find the value of x and of y .

(2 marks)

(c) The point E lies on OD such that $OE : OD$ is $1 : 1 + \lambda$. Find the value of λ such that \vec{BE} is parallel to the X -axis.

(3 marks)